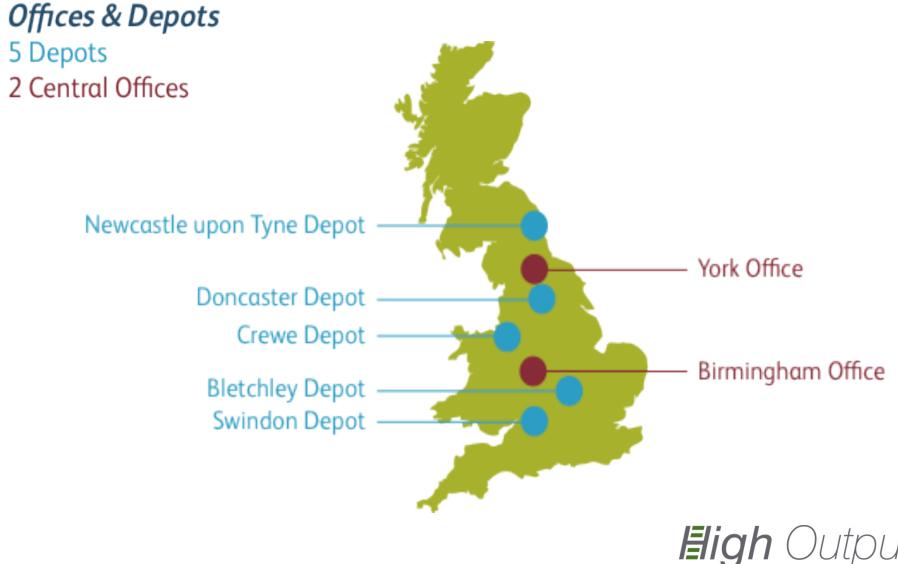


Using Technology to Improve Safety within High Output:

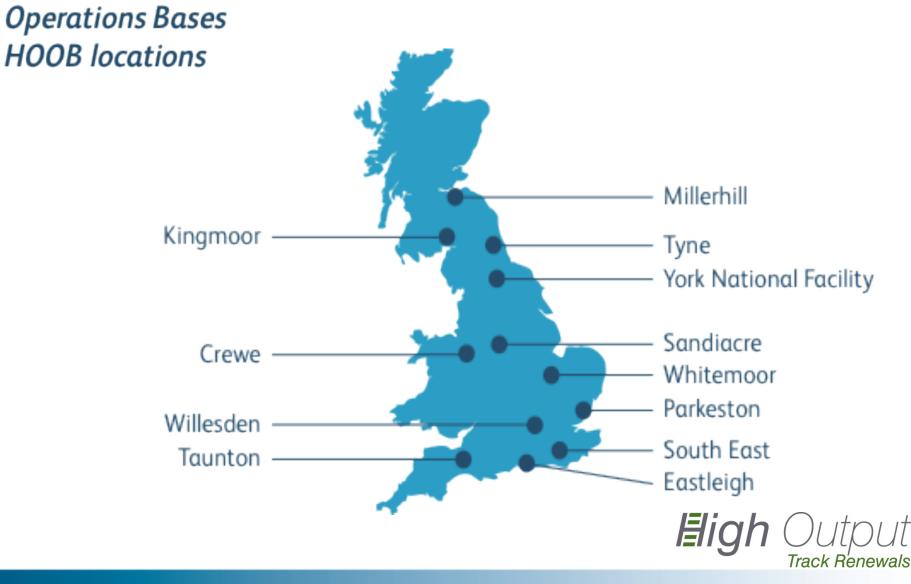
Safe & Efficient Access

David M Underwood Director of Engineering, Design & Improvement



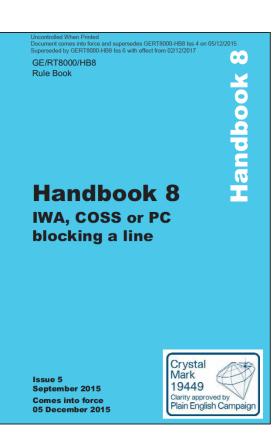
Introduction

- Network Rail High Output Fleet:
 - 2 Track Relaying Systems (TRS)
 - 5 Ballast Cleaning Systems (BCS)
- Deploy 5 nights/week, with adjacent lines open and typically handing back at 100mph.
- Delivering 70% of plain line linear volume in Great Britain in CP5 (Apr 2014 – Mar 2019).



Track Renewals

Blocking the Line: The Need to Change....


Current Protection Methods for Line Blockages

Handbook 8 of the rule book describes the process for taking a Line Blockage:

- 1. The signaller arranges for a protecting signal to be placed to danger
- 2. Signaller installs reminder appliance on the panel.

If safety of the line is affected then a form of additional protection is required:

- a) Signal disconnection
- b) Detonators and Possession Limit Board (PLB)
- c) Installation of a Track Circuit Operating Device (TCOD)

Problems with the Current Arrangements

- Protection methods require staff to be lineside.
- Complicated and relies on multiple 1 to 1 verbal communications
- Many parties all with different roles and responsibilities
- The method that tends to be the preferred option is PLB's and detonators. The activity is:
 - Potentially hazardous requiring staff to enter the 4' every time.
 - Slow and time consuming utilising valuable working time

Safety Stats – Operational Close Calls

- RAIL INDUSTRY 2017-18 YTD <u>157</u> operational close call incidents relating to Line blockages.
- Protection incorrectly placed
- Miscommunication between COSS and Signaller
- Miscommunication between COSS and Possession support staff
- Signaller error

The High Output Safe & Efficient Access Project

Aims of the Safe & Efficient Access Project

- To create a step change improvement in safety by removing staff from the 4 foot when placing and removing protection.
- To reduce the amount of time taken to take and handback blockages of the line (possessions and line blockages)

Network Rail Safety Vision

Outstanding safety performance and outstanding business performance go hand in hand

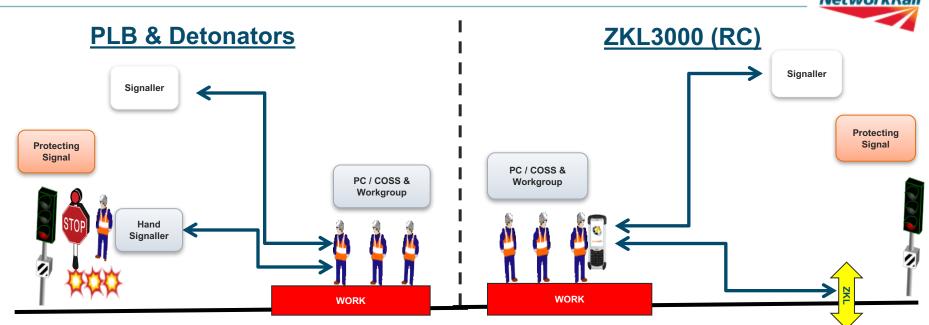
Line Blockages within High Output

- High Output activities require line blockages of the adjacent line varying from 5-15 minutes per night.
 - 12 x Line blockages for TRS
 - 6 x Line blockages for BCS
- All of which affect safety of the line and require a form of additional protection.

The preferred method of additional protection for High Output has been detonator protection.

NetworkRail

Recent Success in High Output


Introduction of ZKL3000 (RC)

Sponsored through Product acceptance by High Output

_	igh Output		NetworkRail	
In	nfrastructure Projects			
	IP 5195	ZKL 3000 Utili	sation	
	A	pproval and Authorisatic	n	
Date	Print Name	Signature	Position	
16/05/2017	David Underwood	Allowed.	Programme Engineering Mana	
16/05/2017	John McKee	Ah-Junce	S&T Engineer	
1.0	Date	Initial Issue		
Revision	Date	History Record	Amendment	
1.0		Initial Issue		
2.0	31 st March 2016	Post ACJV Transition into Network Rail review and update		
2.1	May 2017	Amended /updated		

The difference to TRS since Introducing ZKL

		Using PLB and D	etonators as addition	onal Protection	Using ZKL3000 (RC) as additional Protection		
	Line			Average time			Average time
Day	Blocks	Visits to the 4	No. of Phone calls	taken to place	Visits to the 4	No. of Phone calls	taken to place
	Req	foot		and remove	foot	NO. OF FIIONE Cans	and remove
				protection			protection
		24 (2 per line	96 (8 per line				
м	12	block)	block)	24 minutes	1 (install)	24	4 min
Т	12	24	96	24 minutes	0	24	4 min
W	12	24	96	24 minutes	0	24	4 min
Т	12	24	96	24 minutes	0	24	4 min
F	12	24	96	24 minutes	1 (remove)	24	4 min
Total	60	120	480	2 hours	2	120	24 mins

The Logic – ZKL Vs Conventional

Protection Type	Visits to the 4 foot (for 1 line blockage)	Communication (for 1 line blockage)	Time (for 1 line blockage)
PLB & Dets	1 to take 1 to handback 2 total	4 calls to take 4 calls to handback 8 total	2 mins to deploy and remove
ZKL3000 (RC)	installed once prior to shift	1 call to take 1 call to handback 2 total	20 seconds to deploy and remove

TRS

- 4 foot visits = reduced by 118 (97%) per week
- Phone Calls = reduced by 360 (75%) per week
- Protection time = reduced by 1 hour 36 mins per week

BCS

- 4 foot visits = reduced by 58 (97%) per week
- Phone Calls = reduced by 180 (75%) per week
- Protection time = reduced by 48mins (80%) per week

Summary

- Reduced the risk of exposing staff to moving trains when placing / removing protection for line blockages.
- Reduced line blockage visits to the 4 foot by 97% per week per system
- Reduced the amount of phone calls for line blockages by 75% per week per system
- Gained additional 96minutes (TRS) and 48 mins (BCS) per week per system through introduction of ZKL3000 (RC)


The future for High Output and Network Rail

- Incab Flexible Train Arrival Point (FTAP)
- ZKL3000(RC) mobile app
- ZKL's installed at fixed locations
- Tamping using ZKL3000 as protection
- High Output Protection Zone
- Personal Warning System (PWS)
- Wireless train warning system (SATWS, ATWS)
- Remote TSR Boards

For further information contact: Neil Sunner Project Manager (High Output Improvement) Email: neil.sunner@networkrail.co.uk Phone:07834147559